Lab 5 Report: Localization
Team # 9

Artemis Pados
Selinna Lin
Min Khant Zaw
Reng Zheng

6.4200 RSS
April 12, 2025

1 Introduction - Artemis Pados

In this lab, we designed a localization system that allows a robot (our racecar)
to estimate its position and orientation (its “pose”) within a known environment
(Stata basement). Localization is a fundamental capability in robotics that is
crucial for navigation, mapping, and decision-making. The system we built uses
Monte Carlo Localization (MCL), which utilizes a particle filter to main-
tain and continuously update a set of hypotheses about the car’s location.

Our approach combines two key components: a motion model and a sensor
model. The motion model predicts how the car’s pose changes over time based
on odometry (wheel encoder readings). However, these readings are noisy and
imperfect and thus the motion model includes randomness to reflect uncertainty
in movement. The sensor model evaluates how likely a given pose is by com-
paring predicted sensor readings to actual ones.

Bringing it all together to perform localization, the particle filter maintains a
cloud of particles where each particle represents a possible pose. As the robot
moves and sensor data is received, the motion model and sensor model update
accordingly based on the new data. The particle filter resamples the particles,
favoring those with higher likelihood (weights), to yield a belief of the location
of the car that is concentrated at more likely location.

Overall, this lab’s work is a demonstration of how a moving robot’s location
can be estimated with probabilistic methods in the face of noise. This work
on localization is foundational for a robust future autonomous system: without

knowing where it is, a robot cannot plan routes, avoid obstacles, or interact
meaningfully with its environment.

2 Technical Approach

2.1 Technical Introduction - Reng Zheng

Localization is a common task in robotics to determine the location of the robot
in space. In our case, we are using a pre-scanned map of the basement,
our primary testing site, and attempting to keep track of where the racecar is
in the basement during movement.

We do this with the following components:

1. The prescanned map of Stata basement.
2. Ingested LIDAR and odometry data.

3. A motion model to evolve particles that represent potential positions of
the racecar in space.

4. A sensor model to evaluate the probability is represented by any given
particle.

5. A particle filter to prune unlikely robot positions.

The odometry data is ingested by the motion model to evolve the points via
the provided kinematic information. Noise is added to the evolution in the
motion model to represent noise in the odometry data. The evolved points and
LIDAR scans are fed into the sensor model, which uses a precomputed table
of probabilities to determine the likelihood the robot is at any given point.
The particle filter then resamples with replacement the evolved points using
the precomputed likelihoods, before passing the new set of particles back to the
motion model for the next time step.

2.2 Motion Model - Reng Zheng

The motion model ingests odometry data odomy, = [AXacecar Ay racecar | \gracecar]T
representing the racecar’s motion from its reference frame in terms of Cartesian
position changes and rotations. As such data always has some noise and uncer-
tainty, we model this by adding a small Gaussian noise to the odometry values
each time before they are used to evolve a given particle representing a potential

racecar position. We will denote the modified odometry data as odam,(;), where
¢ is the index of the particle and its associated noise-augmented odometry.

To evolve the particles, we now need to convert the odometry into the map
frame by applying the following formula:

Ax®

= (i cos(0 —sin(6
5X1i) _ (Ok) (k)] Ayl
k

sin(f;) cos(6k)

racecar

where 6}, is the heading of the racecar in the map frame at the current timestep
and 6X ,gi) is the change of the particle position in the map frame at timestep k.
We can now add §X ,ii) to the vector)Z,gi), which represents the guess of the
particle i about the current position of the racecar in the map frame. This yields
X,@rl = X’S) + 5)2',8')7 or the evolved point ¢ at timestep k + 1. Furthermore,
because we are using Ackermann Steering, we know that heading changes from
the racecar’s frame are additive to the map’s frame, meaning we know 041 =

9,?) +60@ . Thus, we get the following equations for the motion model evolution:

RO, = KO 4 5K
oL, = ol + o)

2.3 Sensor Model - Artemis Pados

In our pipeline for our racecar’s localization, the sensor model assigns likelihoods
to each particle based on how well that particle’s predicted laser scan matches
the actual scan observed by the robot. These likelihoods are critical for the
MCL framework where particles representing more plausible car poses are given
higher weights (and are thus more likely to be sampled in the resampling step
of the particle filter).

Our sensor model evaluates the probability p(zx | zx, m) of an observed scan zy,
given a particle pose x; and a known map m. This is computed as a weighted
sum of four model components:

p(Z]E;z) ‘ Tk, m) = Ohit Phit(Z;(:) | d)+ashort pshort(zl(:) | d)+anlax pmax(z;gi))+arand prand(zj(:))
where

° z,(f) is the i-th beam of the observed scan,

e d is the expected range from the particle’s pose (found via raycasting),
e and apiy = 0.74, Aghors = 0.07, amax = 0.07, qyang = 0.12 is given.

Within this weighted sum, each term models a particular physical phenomenon.
Specifically,

® phit is a truncated Gaussian centered at d with standard deviation oy =
0.5, i.e.

(z - d)?

phit(ZId)=17~CXp<— 5 >, 0 < 2z < Zmax,
207

® Dshort Tepresents unexpected short readings, i.e.

pshort(2|d)_{(21(l_fl)v nggd

.)
0, otherwise

® Pnax represents a mass at the biggest possible range, i.e.
() 17 z = Zmax
z) = ,
Pmax 0, otherwise
e and Pranq is uniform distribution over all possible ranges, i.e.

1

ZIl’laX

Prand (Z) =

For all combinations of discrete expected distances d and measured ranges z,
we precompute p(z,(:) | d) and store them in a 201 x 201 lookup table where
each column (for a fixed d) is normalized to sum to 1.

At runtime, we use the PyScanSimulator2D library to generate simulated LI-
DAR scans for each particle pose 1:,(6]). These simulated measurements d(:)
approximate what the LIDAR would have returned if the robot were actually at

J:g). We then discretize both the real LIDAR observation z,(j) and the simulated
distances dU9 | and use them to index into the precomputed sensor model table.
This gives us the likelihood of observing z,(:)
dU% for each beam i.

The total likelihood of observing z; given particle x

computed as:

given the expected measurement

fcj) and map m is then

n
Pz o m) = [Tp(zf” [d99),
i=1
which serves as the importance weight for particle x,(f) in the particle filter.
Overall, this model balances physical accuracy with computational efficiency.
The precomputed table trades memory space for fast runtime performance even
when evaluating many particles.

2.4 Particle Filter - Selinna Lin

The particle filter integrates the motion model (Section 2.2) and sensor model
(Section 2.3) to implement our Monte Carlo Localization algorithm.

First, the particle filter initializes particles around a gaussian to provide a guess
of where the robot’s location is with a random spread of particles around the
clicked intial pose. This happens whenever a new pose for the robot is initialized
on the map.

The odometry callback passes processed odometry data into the motion model
for updating particles with accounted noise. The laser scans callback passes

scanned data from the LiDAR into the sensor model to evaluate for the weights
of the particles (i.e. the likelihood that the particle is accurate in estimating
the odometry of the robot). We use these weights to resample the particles and
publish the estimated pose as a transformation between the /map frame and a
frame for the car’s expected base link, which is /base_link_pf for the simulator
and /base_link for the real car.

It is worth noting that we ran into race conditions, and so we added a lock
from the threading library such that the lock would be acquired whenever the
particles are being updated.

3 Experimental Evaluation - Min Khant Zaw /
Selinna Lin

3.1 Simulation - Min Khant Zaw

To evaluate the performance of our particle filter, we first tested it by running
our wall follower in simulation. We had the car follow the wall over a long run,
making it turn around the corner and obstacles. As we can see from Fig. [1} the
pose estimated by our particle filter, which is indicated by the red arrow, aligns
correctly with the pose of the robot even when the robot is turning around the
corner.

Fig. 1: The picture shows that the estimated pose correctly aligns with the
actual pose of the robot.

We then plotted the estimated pose from the topic /pf/pose/odom and the
ground truth from the topic /odom using the rqt graph to numerically visualize
the performance of our particle filter. We first plotted the = and y-coordinates
of the estimated pose and the ground truth. We found that the y-coordinate of
the estimated pose stays closer to the ground truth than the z-coordinate (Fig.
. This behavior is due to having more noise in « than y in our motion model
since there are more features in z than y in the map.

Estimated Pose vs Ground Truth

0 T T
—— Jjodom/pose/pose/position/x
5 /pfipose/odom/pose/pose/position/x
E
< ______________————————________
=] e ——
.l,;l _________—————_.
]
g -6
x
-8
-10
-3.4 -3.2 -3.0 —-2.8 —-2.6
Time (s) —4.2798000000e5
(a) x-coordinate
Estimated Pose vs Ground Truth
T T T
041 — fodom/pose/pose/pasition/y
—— /pf/ipose/odom/pose/pose/position/y
_. 02
E
[=
2 0.0
@
&
” 0.2
-0.4
-0.8 —-0.6 -0.4 —-0.2 0.0
Time (s) —4.2798400000e5

(b) y-coordinate

Fig. 2: Graphs (a) and (b) display the z-coordinate and y-coordinate of the
estimated pose and the actual pose respectively. Both x and y-coordinates
of the estimated pose stay close to the ground truth.

We also plotted z and w of the orientation of the estimated pose and the ground
truth to compare them. We saw that both z and w of the estimated pose remain

almost the same as the ground truth (Fig. [3). We can see that even when z
and w of the estimated pose diverge from the ground truth, they converge back
fairly quickly.

Estimated Pose vs Ground Truth

T T T
044 — fodom/pose/pose/orientation/z
—— /pfipose/odom/pose/pose/orientation/z
— 0.2
[=
pad _
S —_
@ ‘“\n_q__\
s 00— —= —
w H:—._‘__‘
[=1]
=
< 0.2
-0.4
—6.2 —-6.0 -5.8 -5.6 -5.4
Time (s) —4.2801000000e5
(a) z of orientation
Estimated Pose vs Ground Truth
1.100 T T T
—— Jjodom/pose/pose/orientation/w
Lo75 /pf/posefodom/pose/pose/orientation/w
1.050
G 1.025
=]
m
= 1.000 4=——] — —
@ I H_——':“"“"-“-—-n_._________
2 0,975
<
0.950
0.925
0.900
—4.6 —4.4 —4.2 —-4.0 —-3.8
Time (s) —4.2801000000e5

(b) w of orientation

Fig. 3: Graphs (a) and (b) display the z and w of orientation of the estimated
pose and the actual pose respectively. Both z and w of orientation of the
estimated pose stay close to the ground truth.

We calculated the absolute error of the estimated pose and found the maximum
and minimum errors (Table [I). We can see that our particle filter is able to
estimate the pose of the robot exactly as the ground truth at some locations,
giving us the minimum errors of 0 in all of them.

Table 1: Maximum and minimum error values in x, y coordinates and z, w of
orientation.

Maximum Error in x-coordinate 0.6742
Minimum Error in x-coordinate 0
Maximum Error in y-coordinate 0.01856
Minimum Error in y-coordinate 0
Maximum Error in z of orientation 0.1244
Minimum Error in z of orientation 0
Maximum Error in w of orientation | 0.02944
Minimum Error in w of orientation 0

3.2 Real World - Selinna Lin

After successfully implementing and testing our localization algorithm in sim-
ulation, we transitioned to testing it on the actual car. Our goal was to verify
whether the car could correctly identify its position on the map when initial-
ized at a location that roughly corresponds to its real-world starting point, and
whether our MCL algorithm could accurately estimate future poses as the car
moved.

To evaluate this, we initialized the car at a known starting position, drove it
around an arbitrary path, and then returned it to the original location. We
then checked whether the estimated x and y positions converged back to the
initial values. This served as a consistency check: successful convergence would
indicate that the vehicle correctly recognized it had returned to a previously
visited location, thereby validating the accuracy and robustness of the localiza-
tion system.

We conducted three trials of this experiment. The results of this experiment
indicate that the localization algorithm successfully identified previously visited
positions. Figures and [0] present the graphical results for all three trials.
In each case, the estimated poses demonstrate a clear convergence back to the
initial position, confirming the system’s ability to recognize and return to a
known location. Minor deviations observed across trials can be attributed to
human driving error.

Estimated vs. Initial Pose (x-coordinate) Estimated vs. Initial Pose (y-coordinate)

= Initial Pase {x) = Estimated Pose (x) = Initial Pose (y) = Estimated Pose (y)
0 25
2 2
-4
H g 15
g g
2 2 10
x -8 >
-10 5
-12 o
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time Time
(a) z-coordinate comparison. (b) y-coordinate comparison.

Fig. 4: We show Trial 1 results depicting the Estimated vs. Initial Pose for x-
and y-coordinates.

Estimated vs. Initial Pose (x-coordinate) Estimated vs. Initial Pose (y-coordinate)
= Initial Pose () = Estimated Pose (x) = Initial Pose (y) = Estimated Pose (y)
0 25
2 2
4
H § 15
g -« £
H 2 n
x 8 >
10 5
-12 o
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Time Time
(a) x-coordinate comparison. (b) y-coordinate comparison.

Fig. 5: We show Trial 2 results depicting the Estimated vs. Initial Pose for z-
and y-coordinates.

Estimated vs. Initial Pose (x-coordinate) Estimated vs. Initial Pose (y-coordinate)
= Initial Pose () = Estimated Fose (x) = Initial Pose (y) = Estimated Pose (y)

0 25

2 20 _/_J\—

4
- 5 15
2 2 n
x B >

0 5

12 0

0 2000 1000 6000 0 2000 4000 5000
Time Time
(a) x-coordinate comparison. (b) y-coordinate comparison.

Fig. 6: We show Trial 3 results depicting the Estimated vs. Initial Pose for z-
and y-coordinates.

4 Conclusion - Artemis Pados/Selinna Lin

In this lab, we successfully designed and implemented a full Monte Carlo Lo-
calization (MCL) pipeline to estimate our car’s pose within a known map using
noisy sensor and motion data. Our system integrates three critical components:
a probabilistic motion model that updates particle positions based on odometry
data, a sensor model that assigns weights to particles by comparing simulated
and real LIDAR measurements, and a particle filter that resamples these par-
ticles to track the most likely pose over time. Each of these components was
grounded in probabilistic robotics theory, and we made deliberate design deci-
sions to balance computational ease with effective modeling.

Through our experimentally gathered data and real-time observations in both
simulation and the real world, we have validated the robustness and accuracy of
our MCL pipeline in estimating the vehicle’s pose while car is in motion. These
encouraging results not only confirm the effectiveness of our approach, but also
lay a strong foundation for future refinement and enhancements.

Handling kidnapped robot scenarios as well as multi-modal distributions in a
robust manner is a natural next step for the localization capabilities of our race-
car. Further, the current system we have implemented assumes a static map.
Extending our work to account for dynamic obstacles (such as pedestrians or
other cars in a real world scenario) would make our localization efforts more
resilient. Regardless, this localization module will serve as the backbone for
future autonomous behavior such as path planning and control and we look
forward to expanding our work in a reliable and effective manner.

5 Lessons Learned

5.1 Artemis Pados

In this lab, I focused a lot on the sensor model for the particle filter. I found
that doing the math by hand for this (and formally stepping through the deriva-
tion of the Bayes filter) really helped solidify my understanding of probabilistic
reasoning in robotics. It was rewarding to see how the theoretical tools we dis-
cussed in lecture and interacted with mathematically directly apply and work
on physical systems like the racecar. Working in parallel with my teammates,
who handled the motion model and integration with the particle filter, empha-
sized how effective communication and a shared grasp of the math allowed us to
not only intertwine our separate working parts, but also wholistically develop
a well-functioning system. This week’s lab has deepened my appreciation for
both the theory and engineering behind robots and autonomous systems.

10

5.2 Selinna Lin

Overall, I feel that the lab’s most challenging part was integration on the car
as well as any debugging we ran into on the way. We were pretty quick to
implement each component (motion model, sensor model, and particle filter)
individually. I worked on the particle filter, and since we were developing in
parallel, T had to trust that my teammates’ modules would work as expected,
since mine depended on theirs. I think we did a solid job communicating both
technically and logistically. In terms of technical, we all understood what the
components did and how they would come together even if each one of us didn’t
work on all the parts - which would be inefficient if we did. In terms of logistical,
we had clear team goals and deadlines in mind of when we most definitely wanted
something done and the means of achieving that, as well as what things we can
push back to focus on more important tasks. I'm really happy with what we
were able to pull off by the end of this lab, and I'm excited to see how our team
continues to work together moving forward!

5.3 Min Khant Zaw

For this lab, integrating the algorithm on the robot was the most challenging
because we faced various errors and issues such as the differences between sim-
ulation and the actual robot. I definitely learned how to think while debugging
and how to use various tools such as rqt graph in this lab since we could not
figure out how to use it in previous labs. Our team was able to finish a working
algorithm earlier than the deadline, but optimizing it to perform better on the
actual robot took longer than we expected. The communication between our
team members was solid since there was no issue caused by miscommunication
as far as I remember. The more labs I have worked on, the more I realized that
everything might not go smoothly when we test our algorithms on the robot,
and that it is important to start working on the lab as early as possible.

5.4 Reng Zheng

Overall, the lab’s most challenging section was coordinating the integration
of parallel components. Although we were well-communicated, the increased
complexity of the tasks made integration much harder to debug than in previous
labs. However, because we started development and integration early, this was
trivial to solve and we always left Stata basement before midnight. Overall, I'm
happy with how we approached the lab, given that we had little conflict and
low stress throughout. I think that the takeaway from this lab, then, is that
starting early, communicating often, and integrating early are all good strategies
to parallel development.

11

	Introduction - Artemis Pados
	Technical Approach
	Technical Introduction - Reng Zheng
	Motion Model - Reng Zheng
	Sensor Model - Artemis Pados
	Particle Filter - Selinna Lin

	Experimental Evaluation - Min Khant Zaw / Selinna Lin
	Simulation - Min Khant Zaw
	Real World - Selinna Lin

	Conclusion - Artemis Pados/Selinna Lin
	Lessons Learned
	Artemis Pados
	Selinna Lin
	Min Khant Zaw
	Reng Zheng

