
Lab # 3 Report: Race Car Wall Follower &

Safety Controller

Team # 9

Artemis Pados
Selinna Lin

Min Khant Zaw
Arthur Hu

6.4200 RSS

March 15, 2025

1 Introduction - Artemis Pados

Autonomous vehicles are becoming increasingly prevalent in our society. En-
suring robust navigation and reliable safety mechanisms is critical for a suc-
cessful adoption in the real-world. In this lab 3, our team developed a wall
follower and an emergency-stop safety controller which both make use of
LiDAR data to navigate and avoid collisions in dynamic environments. These
components are essential building blocks of autonomous systems and they are
foundational for wall-based (or lane-based) navigation and immediate safety in-
tervention.

The wall follower is created to maintain a desired distance from a wall
while following it smoothly. This is achieved by processing LiDAR scans and
using a Proportional-Derivative (PD) controller to adjust steering commands.
This capability is crucial for autonomous systems navigating hallways, roads,
or other indoor-outdoor environments with defined paths.

The emergency-stop safety controller we made prevents crashes by moni-
toring potential obstacles ahead. We again use the same LiDAR data and
observe if an object is detected within a critical distance. If so, we override driv-
ing commands and stops the race car immediately. This safety mechanism is
essential for handling unexpected obstacles in potentially complex environments.

Together, the wall follower and safety controller work with the same data to
enable both precise navigation and real-time crash prevention. In Lab

1

3, we explored ideas of PD control, geometric data extraction, line fitting for
wall detection, and obstacle avoidance. These techniques and implementations
are applicable to real-world autonomous vehicles, including self-driving cars,
drones, and other UAVs. The following sections provide detailed explanations
of our technical approach, as well as enumerating our design choices and quan-
titative experimental results.

2 Technical Approach

2.1 Technical Intro to Wall Follower and Safety Controller
- Artemis Pados / Selinna Lin

Expanding on the objectives outlined in Section 1, we implemented both our
wall follower and safety control systems using LiDAR-based perception in ROS2.

The system consists of two ROS nodes: the wall follower and the safety controller,
both utilizing LiDAR data from the /scan topic. The wall follower node pro-
cesses LiDAR scans and publishes the drive command to the topic /vesc/high
level/input/nav 0 (detailed in section 2.2). The safety controller node moni-
tors LiDAR data and subscribes to the same drive topic that the wall follower
publishes to, allowing it to retrieve information such as velocity and steering an-
gle (detailed in section 2.3). If the safety controller detects an obstacle within
a certain distance threshold, it overrides the navigation command by publish-
ing a stop signal to the topic /vesc/low level/input/safety. This system
architecture is illustrated in Fig. 1.

Fig. 1: The overview of system architecture showing what topics the wall fol-
lower and safety controller nodes subscribe and publish to.

Note that the scale of a meter from the perspective of the car in code is different
from the scale of a meter in the real world. For instance, 0.75 m in code
corresponds to 0.5 m in the real world.

2

2.2 Wall Follower - Selinna Lin

The primary goal of the wall follower is to enable our autonomous racecar to
maintain a consistent distance away from the wall while navigating alongside it
smoothly. To do this, the system has to effectively process LiDAR scan data to
estimate the car’s distance away from the wall and adjust the car’s motion to
prevent collision while ensuring stable tracking.

Our wall follower algorithm follows these steps (see Fig. 3):

1. LiDAR Data Processing: The wall follower node subscribes to /scan.
The algorithm first filters the LiDAR data to extract valid range measure-
ments within a specific angle range in sight. Refer to Fig. 2.

Fig. 2: A diagram showing valid LiDAR scan angle ranges the algorithm uses
for following left and right wall. For the left wall, scan angles range from −π

8
to 3π

8 . For the right wall, scan angles range from π
8 to − 3π

8 .

2. Wall Detection: The algorithm uses numpy.polyfit() to approximate
the distance between the car and the wall. Least squares line fitting was
chosen because it is robust in noisy environments, aligning with the noisy
data gathered by the LiDAR. Another potential solution was RANSAC
(Random Sample Consensus) for line fitting, as it’s designed to handle
outliers by iteratively selecting a subset of points and fitting a model to
them. However, it is computationally expensive and the iterations made
the car react very slowly to changes in wall curvature. In contrast, the
polyfit provided a faster solution, effectively capturing the wall’s slope
while handling noise, making it a more suitable choice for our case. This
slope is also used as weight for Kd.

3. PD Controller:
e(t) = |ddesired − destimated| (1)

u(t) = Kp × e(t) +Kd × slope +Ki ×
∫

e(t) dt (2)

3

The error between the estimated distance and desired distance is calcu-
lated in (1). Equation (2) shows the control equation we implemented on
our racecar.

The proportional term (Kp) adjusts the steering command based on the
error from the desired distance. The derivative term (Kd) helps to prevent
oscillations of the car motion by weighting how fast the wall curvature is
changing from the perspective of the car. The integral term (Ki) helps
get rid of steady state error.

We used the following values: Kp = 1.0, Kd = 0.5, Ki = 0
Since the car needed to react quickly and accurately to sudden environ-
mental changes, using Ki was found to hinder performance and therefore
omitted from our implementation.

4. Publish Steering Command: The resulting steering command is pub-
lished to the drive topic: /vesc/high level/input/nav 0

Fig. 3: The diagram illustrates the data processing flow for the wall follower
node, as described above.

2.3 Safety Controller - Arthur Hu

Our Safety Controller node is designed to prevent crashes during testing. By
writing a command with no velocity to the drive topic /low level/input/safety,
it can override commands from the Wall Follower and stop the car. Because
the safety topic has a higher priority than the nav 0 drive topic that the Wall
Follower uses for control (see Fig. 1), the car will follow the stop comand even
when the Wall Follower is still issuing drive commands.
Conversely, since the teleop commands use a topic with higher priority than
the Safety Controller, it will not trigger when the car is under manual control.
Therefore, while it is possible to crash the car into a wall at high speeds, it can
only happen when a human operator tells it the car to do so, something that
would have dubious ethical consequences if implemented in a real self-driving
car.

In order know when to send the stop command at the right time, the Safety
Controller must first be able to predict crashes with incoming obstacles. The
current implementation does this by taking the minimum distance recorded
within a certain angular range and comparing it to a preset threshold distance
T . The distance data comes from LiDAR scans published to the /scan topic.
The minimum distance Lmin is derived from all measurements recorded within

4

30◦ in either direction relative to the front side of the car. When it finds that
Lmin < T , the Safety Controller detects an obstacle and publishes the stop
command.

This approach works well at low speeds, but experiments have shown that while
the node still detects obstacles and publishes a stop command at higher speeds,
the momentum of the car can carry it significantly closer to an obstacle than T .
An initial version of a velocity-adjusting threshold was implemented to address
this issue, but has been retired for now due to reliability issues.

3 Experimental Evaluation - Min Khant Zaw /
Selinna Lin

3.1 Technical Procedures: Wall Follower and Safety Con-
troller Data Collection - Selinna Lin

The Wall Follower and Safety Controller logs real-time data to evaluate the
racecar’s accuracy in maintaining the desired wall-following distance and effec-
tiveness in stopping before obstacles, respectively. All tests were conducted on
a U-shaped wall path in the basement of MIT Stata to ensure consistency under
the same control environment.

• For the Wall Follower, key metrics recorded include time (s), desired and
estimated distances (m), error (m), and velocity (m/s). Data is written to
a CSV file and later transferred to Google Spreadsheets for visualization.
Smooth line plots were generated to analyze error trends over time and
compare the estimated vs. desired distance. We tested how well the
system maintained the desired distance at different velocities to evaluate
its performance under varying speeds.

• For the Safety Controller, we measured velocity (m/s), stopping thresh-
old (m), and estimated distance to the closest point (m) detected within
its −π

6 to π
6 scan range. We specifically tested how much distance was

required for the vehicle to stop at different velocities, allowing us to as-
sess the controller’s response time and stopping reliability across varying
speeds.

3.2 Wall Follower Experimental Data - Min Khant Zaw

First, we tested the wall follower algorithm by giving the car a velocity of 1m/s.
Since there were turns along the path, the car diverged and converged in the
beginning, slowly becoming steady in following the wall from a fixed distance.
We then increased the velocity by 0.25m/s up until 2m/s. We found that the
performance of the car remained fairly consistent for different velocities (Fig.
4 a-e). Because of this, the graphs of error over time also show reasonable

5

consistency for various velocities (Fig. 5 a-e). The maximum, minimum, and
average errors for the tested velocities are listed in Table 1.

(a) Velocity: 1 m/s (b) Velocity: 1.25 m/s

(c) Velocity: 1.5 m/s (d) Velocity: 1.75 m/s

(e) Velocity: 2 m/s

Fig. 4: Graphs (a)-(e) display the error of desired distance and estimated dis-
tance to the wall over time with varying velocities. The performance of the
wall follower is fairly consistent for different velocities. The car con-
verged and diverged in the beginning during turns and continued to follow the
wall approximately at the desired distance.

6

(a) Velocity: 1 m/s (b) Velocity: 1.25 m/s

(c) Velocity: 1.5 m/s (d) Velocity: 1.75 m/s

(e) Velocity: 2 m/s

Fig. 5: Graphs (a)-(e) display the error over time with varying velocities. We
observer performance consistency of the wall follower throughout
varying velocities. The car converged and diverged in the beginning during
turns and continued to follow the wall approximately at the desired distance,
causing the error to be close to 0.

7

Table 1: Error Matrices at Various Velocities

Velocity
(m/s)

Maximum
Error (m)

Minimum
Error (m)

Average
Error (m)

1 0.54 0 -0.1348875
1.25 0.52 0 -0.0384424
1.5 0.52 0 -0.0319718
1.75 0.76 0 -0.1408474
2 0.91 0 -0.0723125

3.3 Safety Controller Experimental Data - Min Khant
Zaw

Similarly to how we tested the wall follower algorithm, we evaluated the safety
controller by giving the car a velocity of 1m/s and a safety threshold distance
of 0.4 m. We observed if the car crashed into a cone placed in front of it and
collected its distance from the cone if the car did not crash. If the car crashed
into the cone, we then increased the safety threshold distance by 0.1m until the
car did not crash. Then, we increased the velocity by 0.25m/s with the safety
threshold distance that caused the car to stop before crashing at the previous
velocity. We found that the safety threshold distance needs to take the velocity
into account and be increased as the velocity gets higher. The distances of
the car from the obstacle when it stopped with different velocities and safety
threshold distances are shown in Table 2.

Table 2: Crashes and Stopped Distances at Different Velocities and Safety
Thresholds

Velocity (m/s) Safety Threshold (m) Crashed? Stopped
Distance

1 0.4 Yes -
1 0.5 No 0.26
1 0.6 No 0.35

1.25 0.4 Yes -
1.25 0.5 Yes -
1.25 0.6 No 0.25
1.25 0.7 No 0.45
1.5 0.6 Yes -
1.5 0.7 Yes -
1.5 0.8 Yes -
1.5 0.9 Yes -
1.5 1.0 No 0.64
1.5 1.1 No 0.44
1.5 1.2 No 0.65

8

4 Conclusion - Artemis Pados / Min Khant Zaw

Our current race car system yields relatively stable wall following and real-
time avoidance of obstacles. From our experiments, we conclude that given the
tested velocities, the speed does not have a great direct effect on the race car’s
ability to maintain reliable wall following. However, we also conclude that the
safety controller is greatly affected by velocity changes, with a much higher stop-
ping threshold being necessary for higher velocities. In turn, with an increased
stopping threshold, the wall-following ability appears to be compromised. We
enumerate some improvements that could enhance performance and robustness
in future work:

• Velocity-Dependent Safety Threshold: Implement a safety threshold
that is a function of car velocity. Due to the observed trade-off between
threshold distance and wall following ability, we could perhaps cap the
max threshold or we could have the effect of the velocity on the threshold
exponentially decay as the velocity increases. Developing this will also
strengthen our industry-relevant skills, as safety is a critical aspect of
robotics and autonomous vehicle design.

• Multi-Wall Handling: Enable detection of both left and right walls and
implement a decision system for switching between them dynamically.

• Dynamic Velocity Adjustment: Adapt speed based on wall curva-
ture/corner angle and introduce an acceleration/deceleration strategy for
smoother control.

• Collision Prediction: Implement a look-ahead estimation system to
anticipate potential collisions before they occur.

• Camera-Based Lane Detection: Integrate visual perception using Canny
edge detection and Hough line transform to complement LiDAR-based
navigation.

We aim to refine our strategies as we move into the next phase to increase
adaptability as we are tasked with handling more complex driving scenarios.

9

5 Lessons Learned - All

5.1 Artemis Pados

One of the biggest technical takeaways I had from this lab was the impact of Kp

and Kd values on the behavior of the race car system. Very small alterations in
the proportional and derivative gains had the potential to significantly change
the car’s behavior in practice. Thus, many iterations were required in tuning
these values. Further, I also learned that small differences (such as noise) be-
tween the simulated environment and the real world testing could yield drastic
differences in broader performance. Thus, the transition from simulation to
physical system is not as smooth as one could theorize.

On the collaboration and communication side, I gained valuable insight into the
importance of open-mindedness, continuous communication, and general clarity
when working in a team. I noticed that it is extremely important to be orga-
nized and clear with not only technical work such as coding (commenting), but
also with task allocation, deadline determination, and general technical strat-
egy. I feel that I did this well. I also felt that our team worked best when there
was a constant stream of communication between us and our subtasks, either in
person or via messages. I also feel like our output was most successful when we
were all open-minded, listening to all potential ideas and collectively agreeing
on what fits best.

5.2 Selinna Lin

This lab reinforced the importance of iterative problem-solving and effective
teamwork. From a technical problem-solving perspective, tuning the Kp and
Kd parameters required multiple iterations, and it was crucial to understand
how these values affected the system’s behavior to make informed adjustments.
Identifying bottlenecks and diagnosing unexpected system behavior played a
key role in determining which parts of the algorithm needed modification or im-
provement. Troubleshooting often got frustrating and challenging when these
factors were unclear.

Beyond technical problem-solving, team collaboration is essential. Clearly defin-
ing responsibilities and ensuring an even distribution of work helped maintain
efficiency and accountability. Establishing team deadlines keeps progress on
track, while consistent communication helps to ensure that issues are addressed
promptly. Setting up team rules, such as always having at least two people
working on the car together, prevented one person from shouldering too much
of the workload and made debugging more efficient. Having a second set of eyes
often helped catch issues that one person might overlook, reinforcing the value
of teamwork.

10

Overall, this lab taught me a lot about how to work in a team as well as deal with
unforeseen problems or circumstances. I think I made a step in being able to
step out of my comfort zone to collaborate more effectively and tackle challenges
head-on. This experience has strengthened my ability to work efficiently in
a team while refining my approach to debugging and troubleshooting under
uncertainty.

5.3 Min Khant Zaw

From this lab, I learned how to develop a control algorithm using PID and how
the gains can significantly affect the behavior of a robot. I learned that multiple
iterations are required to tune the gains to achieve better results. I also learned
that data collection is important to evaluate the performance of a project and
which data I need to consider for the evaluation. I also learned that the robot
behaves very differently in the real world from the simulation because of factors
not available in the simulation such as friction and hardware issues.

As for the communication and collaboration, I learned that it is important for
team members to openly communicate and get their tasks done on time so that
the whole team will be able to move forward. I also learned that it is better
for team members to meet and work together than having each member work
on the project remotely one after another. Since this is the first lab, I think we
had to take some time to properly get the best workflow for the team, which I
think is something typical. Starting from the next lab, I think we will be able
to collaborate better and more effectively.

5.4 Arthur Hu

I would say that this lab served as a good reminder of the sometimes unpre-
dictable nature of project work. While I certainly gained a good amount of tech-
nical expertise and familiarity through practice, I believe the greatest lessons I
learned from this lab were about teamwork and collaboration. In particular, it
highlighted how important communication is to a well functioning team. There
were some instances where due to conflicting priorities, poor documentation,
or simply a lack of time, it became difficult for everyone to stay on the same
page about the status of the car, the problems that were being solved, or what
solutions were being attempted.

11

At times it felt like we were too scared to make any progress because we did not
understand the effect of the changes we were making, which is understandable
from a safety standpoint, but also slightly concerning considering the relative
simplicity of the system compared to where the course will eventually be taking
us. However, I also recognize that our difficulties were partially due to matters
of circumstance. While this is not a lesson that I learned in this lab specifically,
I am reminded of my previous experiences on similar projects where I learned
that I should try to keep more of an open mind, especially about things that
haven’t happened yet.

On the technical side, I would say that my greatest lesson learned was that
good documentation is just as, if not more, important than solid code. In a
team project, it is very important that teammates can meaningfully build upon
each others’ work; even if you write the best stuff in the world, it doesn’t mean
much if nobody knows how to fix it when it breaks.

Additionally, I found out that while correct PID tuning is important, choos-
ing the right signal to base the initial error off of is also very foundational to
having good control. No matter how well the controller is tuned, some metrics
will have low enough response times that it becomes impossible for the car to
react due to hardware limitations. Debugging this was quite tricky to figure
out.

12

